9.4 Exploring Quotients of Functions

A Definitions

The quotient of two functions is defined by

\[
(f / g)(x) = \frac{f(x)}{g(x)}
\]

\[
(f + g)(x) = f(x) + g(x)
\]

\[
\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}
\]

Ex 1. Let \(f(x) = 1 + x^2 \) and \(g(x) = \sqrt{x-1} \). Find

a) \((f / g)(1) \)

b) \((f + g)(2) \)

c) \(\left(\frac{g}{f}\right)(1) \)

B Domain of the Quotient of Two Functions

The domain of the quotient of two functions is given by

\[
D_{f/g} = \{x \in \mathbb{R} | x \in D_f \cap D_g \text{ and } g(x) \neq 0\}
\]

Note. Division by zero is not allowed.

Ex 2. For each case, find the domain of the quotients \(f / g \) and \(g / f \).

a) \(f(x) = 2^x \); \(g(x) = \log x \)

b) \(f(x) = x^2 - 4 \); \(g(x) = \sqrt{x-1} \)

Ex 3. The functions \(f \) and \(g \) are given by their graphs. Graph the function \(f / g \).
Ex 4. The functions \(f \) and \(g \) are given graphically on the right figure. Match each graph given below with one of the following combinations:

a) \(f + g \)
b) \(f - g \)
c) \(g - f \)
d) \(fg \)
e) \(f / g \)
f) \(g / f \)

Reading: Nelson Textbook, Pages 540-542
Homework: Nelson Textbook, Page 542 #1,2