3.6 Factoring Polynomials

A The Remainder Theorem

If a polynomial \(P(x) \) is divided by \(x - b \) then the remainder is \(r = P(b) \).

Proof:

| Ex 1. Determine the remainder when \(P(x) = 2x^3 - 4x^2 + 3x - 6 \) is divided by |
|---------------------------------|-------------------|
| a) \(x - 2 \) | |
| b) \(x + 1 \) | |

<table>
<thead>
<tr>
<th>Ex 2. When (P(x) = x^3 - kx^2 + 17x + 6) is divided by (x - 3), the remainder is 12. Find the value of (k).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ex 3. When a polynomial (P(x) = 3x^3 + cx^2 + dx - 7) is divided by (x - 2), the remainder is (-3). When (P(x)) is divided by (x + 1), the remainder is (-18). What are the values of (c) and (d)?</th>
</tr>
</thead>
</table>

B The Remainder Theorem (II)

If a polynomial \(P(x) \) is divided by \(ax - b \) then the remainder is \(r = P(b/a) \).

Proof:

<table>
<thead>
<tr>
<th>Ex 4. Determine the remainder when (P(x) = 2x^3 + 3x^2 - 7x - 3) is divided by (2x + 5).</th>
</tr>
</thead>
</table>
C The Factor Theorem

A polynomial \(P(x) \) has \(x - b \) as a **factor** if and only if \(P(b) = 0 \).

Note. In this case \(b \) is a zero of the polynomial function \(P(x) \).

Ex 5. Determine whether

- a) \(x + 2 \) is a factor of \(P(x) = x^3 + 5x^2 + 2x - 8 \)
- b) \(x^2 - 1 \) is a factor of \(P(x) = 2x^4 - 3x^3 - x^2 + 3x - 1 \)

D Integral Zero Theorem

If \(x = b \) is an **integral zero** of the polynomial \(P(x) \) with **integral coefficients**, then \(b \) is a factor (divisor) of the constant term \(a_0 \) of the polynomial.

- **c)** \(P(x) = x^4 - 2x^3 - x^2 + 4x - 2 \)
- **b)** \(P(x) = 2x^3 + 3x^2 - 3x - 2 \)

E Rational Zero Theorem

If \(x = b / a \) is an **rational zero** of the polynomial \(P(x) \) with **integral coefficients**, then \(b \) is a factor (divisor) of the constant term \(a_0 \) and \(a \) is a factor (divisor) of the leading term \(a_n \).

Ex 7. Factor completely.

\[P(x) = 12x^4 - 4x^3 - 11x^2 + x + 2 \]

Reading: Nelson Textbook, Pages 171-176

Homework: Nelson Textbook, Page 176: #1, 2, 5, 6ab, 7af, 9, 10, 12, 13, 16