2.1 Determining Average Rate of Change

A Average Rate of Change

Given a function \(y = f(x) \), let \(y_1 = f(x_1) \) and \(y_2 = f(x_2) \). The average rate of change \((ARC)\) in the \(y \) variable with respect to the \(x \) variable, on the interval \([x_1, x_2]\) (or \(x_1 \leq x \leq x_2 \)) is given by:

\[
ARC = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = m_S
\]

The unit of \(ARC \) is:

\[
\text{unit}(ARC) = \frac{\text{unit}(\Delta y)}{\text{unit}(\Delta x)}
\]

B Secant Line

Let \(y = f(x) \) be a function and \(P(x_1, y_1) \) and \(Q(x_2, y_2) \) two points on its graph.

The slope of the secant line \((m_S) \) that passes through the points \(P \) and \(Q \) is given by:

\[
m_S = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = f(x_2) - f(x_1) = \Delta y
\]

Ex 1. A rock is launched vertically upward. The height \(h \) (in meters) at the time \(t \) (in seconds) of the rock is given by \(h(t) = 100t - 10t^2 \). Find the average velocity \((ARC)\) over the third second of motion.

Ex 2. In the figure below is represented the position \(h \) (in kilometers) at the time \(t \) (in hours) of a balloon. Describe the motion of the balloon in terms of average velocity.
C Increasing Functions

A function \(f \) is *increasing* over the interval \((a, b)\) if
\[
ARC = m_S = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0 \text{ for all } x_1, x_2 \text{ in the interval } (a, b).
\]

D Decreasing Functions

A function \(f \) is *decreasing* over the interval \((a, b)\) if
\[
ARC = m_S = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0 \text{ for all } x_1, x_2 \text{ in the interval } (a, b).
\]

Ex 3.
Prove that the function \(y = f(x) = 10^x \) is increasing over its domain.

Ex 4.
Prove that the average rate of change is constant for a linear function.

Ex 5.
During an experiment the number of bacteria is measured every minutes (for ten minutes) and the results are presented below:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
</tr>
<tr>
<td>5</td>
<td>3200</td>
</tr>
<tr>
<td>6</td>
<td>6400</td>
</tr>
<tr>
<td>7</td>
<td>12800</td>
</tr>
<tr>
<td>8</td>
<td>25600</td>
</tr>
<tr>
<td>9</td>
<td>51200</td>
</tr>
<tr>
<td>10</td>
<td>102400</td>
</tr>
</tbody>
</table>

Compare the average rate of change during the first two minutes and the average rate of change during the last two minutes of the experiment.

Ex 6.
For a given function, the average rate of change over \([2, 4]\) is 5 and the average rate of change over \([4, 7]\) is -2. Find the average rate of change over \([2, 7]\).

Reading: Nelson Textbook, Pages 68-75
Homework: Nelson Textbook, Page 76: #4, 8, 10