3.3 Display Data

A Categorical Data

- ✓ are types rather than numbers
- ✓ are given labels rather than being measured numerically

Categorical data are illustrated by:

Example 1. A nurse is collecting blood type data from her patients. When a new patient is checked in, the nurse does a simple finger-prick test to see whether the patient's blood is type A, B, AB, or O. (These are the four possible blood types. She tracks her results by creating a two-column table with the patient's name and blood type.

Display this data by using a bar graph.

Name	Blood Type
Dominique	A
-llya -	-
Raul	AB
M adiso n	-
Philip	_AB_
S amuel	8
J osefine	-
- Bret t	0
-Paula	B
L eticia -	AB

Blood Type	Tally	Frequency
\land	1	1
В	14	2
AB	111	3
0	0.0	4

Example 2. The pictograph below shows the number of medals earned at an international competition. How many medals did Japan earn?

90

Japan earu 16 Wedals

Medals	#40
****	16
**	8
*****	24
****	ر کریا
	***** **

♦ = 4 medals

B Discrete Data

- ✓ data that can only take certain values
- ✓ data are distinct and can be counted.

Discrete data are illustrated by:

Example 3. The following pie chart shows the shoe size of 150 people. How many people have a size 42 shoe?

 $(14\%) \circ f$ people have a site of 42 $(14\%) (150) = \frac{14}{100} \cdot 150 = 2$

: 21 people have a Shoe site of 42

C Continuous Data

- ✓ Data can have any numerical value (within a range)
- ✓ Examples include length, size, width, time, temperature, cost, etc.
- Histograms are a standard way to graph continuous variables because they show the distribution of the values

Example 4. During July, a local theatre recorded the following numbers of patrons per day over a 30-day period.

Construct a histogram of these data. Frequency 102 116, 113 132, 128 111 156 182 183 171 160 140 154 160 122 187 188 158 112 145 168 187 117 108 6 5 Interval Tally Frequency [100,110) n 4 [110,120) LHY [120,130) 11 3 [130,140) [140,150) #1 2 2 [150,160) 4 1111 [160,170) HH [170,180) 3 141 [180,190) 120 130 140 150 160 170 Chistomers

D Technology

Technology (like Google Sheets) may be used to create graphical displays of data by using a Bar Graph, Pie Chart or Line Graph.

Example 5. Imagine you survey your friends to find the kind of movie they like best:

Comedy	14			
Action	10			
Romance	6			
Drama	8			
SciFi	12			

Use Google Sheets and display this data by using a Pie Chart.

Example 6. In a firm of 400 employees, the percentage of monthly salary saved by each employee is given in the following table. Represent this data through a Bar Graph in Google Sheets.

Savings	Number of Employees
20%	105
30%	179
40%	29
50%	73
60%	14

Example 7. In the table below is given information about temperature in Mississauga, Ontario. Display this data by using a Line Graph in Google Sheets.

	January	February	March	April	May	June	July	August	September	October	November	December
Avg. Temperature (°C)	-5.8	-5.1	-0.6	6.5	12.7	18	21	19.9	15.8	10	3.8	-2.8
Min. Temperature (°C)	-9.6	-9.2	-4.7	1.5	7	12.2	15.2	14.4	10.5	5.2	0.2	-6.3
Max. Temperature (°C)	-1.9	-1	3.5	11.6	18.4	23.8	26.8	25.5	21.1	14.8	7.4	0.7