8.3 Vector, Parametric, and Symmetric Equations of a Line in \mathbb{R}^3

A Vector Equation

The vector equation of the line is:

$$\mathbf{r} = \mathbf{r_0} + t\mathbf{u}, \quad t \in \mathbb{R}$$

where:
- \mathbf{r} is the position vector of a generic point P on the line,
- \mathbf{r}_0 is the position vector of a specific point P_0 on the line,
- \mathbf{u} is a vector parallel to the line called the **direction vector** of the line, and
- t is a **real number** corresponding to the generic point P.

Ex 1. Find two vector equations of the line L that passes through the points $A(1,2,3)$ and $B(2,-1,0)$.

B Specific Lines

A line is **parallel to the x-axis** if $\mathbf{u} = (u_x,0,0), u_x \neq 0$. In this case, the line is also **perpendicular to the yz-plane**.

A line with $\mathbf{u} = (0,u_y,u_z), u_y \neq 0, u_z \neq 0$ is **parallel to the yz-plane**.

Ex 2. Find the vector equation of a line L_2 that passes through the origin and is parallel to the line $L_1 : \mathbf{r} = (-2,0,3) + t(-1,0,2), \quad t \in \mathbb{R}$.

Ex 3. Find the vector equation of a line that:

a) passes through $A(3,-2,0)$ and is parallel to the y-axis

b) passes through $M(-1,0,4)$ and is perpendicular to the yz-plane

c) passes through $P(3,0,0)$ and is perpendicular to the x-axis
d) passes through the origin and is parallel to the xz-plane

C Parametric Equations

Let rewrite the vector equation of a line:

$$\mathbf{r} = \mathbf{r_0} + t\mathbf{u}, \quad t \in \mathbb{R}$$

as:

$$(x,y,z) = (x_0,y_0,z_0) + t(u_x,u_y,u_z), \quad t \in \mathbb{R}$$

The **parametric equations** of a line in \mathbb{R}^3 are:

$$\begin{align*}
x &= x_0 + tu_x \\
y &= y_0 + tu_y \\
z &= z_0 + tu_z
\end{align*}$$

Ex 4. Find the parametric equations of the line L that passes through the points $A(0,-1,2)$ and $B(1,-1,3)$. Describe the line.
D Symmetric Equations

The parametric equations of a line may be written as:

\[
\begin{align*}
 x - x_0 &= tu_x \\
 y - y_0 &= tu_y \\
 z - z_0 &= tu_z
\end{align*}
\]

where \(t \in \mathbb{R} \).

From here, the **symmetric equations** of the line are:

\[
\frac{x - x_0}{u_x} = \frac{y - y_0}{u_y} = \frac{z - z_0}{u_z}
\]

where \(u_x \neq 0, u_y \neq 0, u_z \neq 0 \).

<table>
<thead>
<tr>
<th>Ex 5. Convert the vector equation of the line (L: \vec{r} = (0,1,-3) + t(-1,2,0)), (t \in \mathbb{R}) to the parametric and symmetric equations.</th>
</tr>
</thead>
</table>

Ex 6. Convert the symmetric equations for a line: \[
\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z}{4}
\] to the parametric and vector equations.

Ex 7. For each case, find if the given point lies on the given line.

- **a)** \(L: \vec{r} = (1,2,-3) + t(0,1,-2) \); \(P(1,4,-7) \)

\[
\begin{align*}
 x &= -2 + 3t \\
 y &= t \\
 z &= 5
\end{align*}
\]

- **b)** \(L: \vec{r} = (0,1,5) \); \(P(0,1,5) \)

- **c)** \(L: \vec{r} = \frac{x+1}{-2} = \frac{y-2}{1} = \frac{z}{-3} \); \(P(-3,3,-3) \)

E Intersections

A line **intersects the x-axis** when \(y = z = 0 \).

A line **intersects the xy-plane** when \(z = 0 \).

Reading: Nelson Textbook, Pages 445-448

Homework: Nelson Textbook: Page 449 #1abc, 5acf, 6, 8, 9, 12, 13, 14