6.4 Properties of Vectors

Ex 1. If \(\vec{a} = 2\hat{i} - 3\hat{j} \) and \(\vec{b} = \hat{i} + \hat{j} \), find \(\hat{i} \) and \(\hat{j} \) in terms of \(\vec{a} \) and \(\vec{b} \).

Ex 2. Consider the triangle \(\triangle ABC \). Let \(M \) be the midpoint of \(AC \) and \(N \) be the midpoint of \(BC \). Prove that \(MN = \frac{1}{2} AB \).

Ex 3. Consider a polygon \(ABCD \) and let \(P, Q, R, \) and \(S \) be the midpoints of \(AB, BC, CD, \) and \(DA \) respectively. Prove that \(PQRS \) is a parallelogram.
Ex 4. Prove that diagonals of a rhombus (rhomboid) are perpendicular to each other.

Ex 5. Consider the triangle \(\triangle ABC \) and the point \(O \) defined by \(\overrightarrow{AO} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{3} \). Let \(M \) be the midpoint of \(BC \).

a) Prove that \(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \mathbf{0} \).

b) Prove that \(\overrightarrow{AM} = \frac{3}{2} \overrightarrow{AO} \).

Reading: Nelson Textbook, Pages 302-306

Homework: Nelson Textbook: Page 306 #1, 6, 7, 8, 9; Page 308 #3, 6, 7, 13, 15