6.3 Multiplication of a Vector by a Scalar

A Multiplication of a Vector by a Scalar

By multiplying a vector \(\vec{v} \) by a scalar \(k \) we obtain a new vector noted \(k\vec{v} \) with the following properties:

a) \(k\vec{v} \) has the same direction as \(\vec{v} \) if \(k > 0 \) and the opposite direction if \(k < 0 \)

b) \(||k\vec{v}|| = |k| \times ||\vec{v}|| \)

B Properties

The following properties apply for multiplication of a vector by a scalar:

\[k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b} \]
\[k(m\vec{a}) = (km)\vec{a} = km\vec{a} \]
\[(k + m)\vec{a} = k\vec{a} + m\vec{a} \]

Ex 1. Given the vector \(\vec{v} \), draw the following vectors:

a) \(2\vec{v} \)

b) \(-3\vec{v} \)

d) \(\frac{1}{2}\vec{v} \)

e) \(-\frac{1}{4}\vec{v} \)

Ex 2. Given \(\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k} \), \(\vec{b} = -\vec{i} + \vec{j} + 2\vec{k} \), write the following expressions in terms of the vectors \(\vec{i} \), \(\vec{j} \), and \(\vec{k} \).

a) \(\vec{a} + \vec{b} \)

b) \(2\vec{a} - 3\vec{b} \)

C Vector Unit

An unit vector is a vector having a magnitude of 1. For any vector \(\vec{v} \), a unit vector parallel to \(\vec{v} \) is given by:

\[\vec{u} = \frac{\vec{v}}{||\vec{v}||} \]

Ex 3. If \(\vec{x} \) and \(\vec{y} \) are two unit vectors with an angle of 30° between them, find the magnitude and direction of the vector \(3\vec{x} - 5\vec{y} \).
Ex 4. Given $\| \vec{u} \| = 8m$ and $\| \vec{v} \| = 12m$, $\| \vec{u} + \vec{v} \| = 16$, determine the magnitude and the direction of the vector $2\vec{u} - 3\vec{v}$.

Reading: Nelson Textbook, Pages 293-298
Homework: Nelson Textbook: Page 298 #4, 9, 13, 15, 17, 18, 21, 22