4.3 Vertical and Horizontal Asymptotes

A Vertical Asymptote
If the value of \(f(x) \) can be made arbitrarily large by taking \(x \) sufficiently close to \(a \) with \(x < a \) then:
\[
\lim_{x \to a^-} f(x) = \infty
\]
The line \(x = a \) is called vertical asymptote to the graph of \(y = f(x) \).

B Notes
In this case, writing \(\lim_{x \to a^-} f(x) = \infty \) is better than writing \(\lim_{x \to a^-} f(x) = \) DNE.

C Rational Functions
A rational function of the form \(f(x) = \frac{p(x)}{q(x)} \) has a vertical asymptote \(x = a \) if:
\[
q(a) = 0 \text{ and } p(a) \neq 0
\]

Ex 1. Find the equation of the vertical asymptote(s) for \(y = f(x) = \frac{x - 2}{x^2 - 4} \).

Ex 2. Find the behavior of the function \(y = f(x) = \frac{-x}{x^2 + 2x - 3} \) near the vertical asymptotes.
D Horizontal Asymptote

A horizontal line $y = L$ is called horizontal asymptote to the graph of $y = f(x)$ if:

$$\lim_{x \to \pm\infty} f(x) = L \quad \text{or} \quad \lim_{x \to \pm\infty} f(x) = L$$

Notes.
1. A horizontal asymptote may be crossed or touched by the graph of the function.
2. The graph of a function may have at most two horizontal asymptotes (one as $x \to -\infty$ and one as $x \to \infty$) (see the figure on the right).

E Limits to Infinity

If $n \geq 1$, then:

$$\lim_{x \to \pm\infty} x^n = (\pm\infty)^n$$

$$\lim_{x \to \pm\infty} \frac{1}{x^n} = 0$$

F End behaviour

A polynomial functions $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$ behaves at infinity as the leading term $a_n x^n$.

G Rational Functions

To compute limits at infinity for a rational function, use the end behavior of the numerator and denominator:

$$\lim_{x \to \pm\infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_2 x^2 + b_1 x + b_0} = \lim_{x \to \pm\infty} \frac{a_n x^n}{b_m x^m}$$

Ex 3. Find the equation of the horizontal asymptote(s) to the graph of the function $y = f(x)$ represented graphically below.

Ex 4. Compute each limit.

a) $\lim_{x \to \infty} x^n$

b) $\lim_{x \to \infty} x^2$

c) $\lim_{x \to \infty} x^3$

d) $\lim_{x \to \infty} x^4$

Ex 5. Compute each limit.

a) $\lim_{x \to \infty} (-3x^4 + 5x^3 - 4)$

b) $\lim_{x \to \infty} (-x^3 - 2x^2 + x)$

Ex 6. Compute each limit.

a) $\lim_{x \to \infty} \frac{-2x^3 + x}{5x^3 + x^2 + 1}$

b) $\lim_{x \to \infty} \frac{3x^2 + 1}{-2x^3 + 3x}$

c) $\lim_{x \to \infty} \frac{3x^4 + x^2 - x}{-x^2 + x - 1}$
H Horizontal Asymptotes for Rational Functions

A rational function of the form:

\[f(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0}{b_mx^m + b_{m-1}x^{m-1} + \ldots + b_1x + b_0} \]

has
- a horizontal asymptote \(y = 0 \) if \(m > n \)
- a horizontal asymptote \(y = \frac{a_n}{b_m} \) if \(m = n \)
- no horizontal asymptote if \(n > m \)

Notes:
- A rational function may have at most one horizontal asymptote.

Ex 7. Find the equation of the horizontal asymptote.

a) \(f(x) = \frac{3x^4 + 1}{-2x^4 + 3x^2} \)

b) \(f(x) = \frac{-x^2 + 2x}{x^3 - x^2 + 2} \)

c) \(f(x) = \frac{2x^2 - 3}{x+1} \)

I Oblique (Slant) Asymptote

The line \(y = ax + b \) is an oblique (slant) asymptote for the curve \(y = f(x) \) if:

\[\lim_{x \to \pm\infty} [f(x) - (ax + b)] = 0 \]

Notes:
1. An oblique asymptote may be crossed or touched by the graph of the function.
2. The graph of a function may have at most two oblique asymptotes (one as \(x \to -\infty \) and one as \(x \to \infty \)).

Ex 8. Find the equations of the oblique asymptotes for the function represented below (oblique asymptotes are also represented in the figure).

J Oblique Asymptotes for Rational Functions

A rational function of the form:

\[f(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0}{b_mx^m + b_{m-1}x^{m-1} + \ldots + b_1x + b_0} \]

has an oblique (slant) asymptote if \(n = m+1 \).

Note. To get the equation of the oblique (slant) asymptote, use the **long division algorithm** to write the rational function in the form:

\[f(x) = \frac{P_n(x)}{Q_m(x)} = ax + b + \frac{R(x)}{Q_m(x)} \]

where \(0 \leq \text{degree}(R) < \text{degree}(Q_m) = m \)

Finally, the equation of the oblique (slant) asymptote is given by:

\[y = ax + b \]

Ex 9. Consider the rational function \(y = f(x) = \frac{x^2}{x-1} \).

a) Find the equation of the oblique asymptote.

b) Find the derivative function and simplify.

c) Find the local extrema.