2.4 Quotient Rule

A Quotient Rule

If \(f \) and \(g \) are differentiable at \(x \) and \(g(x) \neq 0 \) then so is \(\frac{f}{g} \) and:

\[
\left(\frac{f}{g} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
\]

\[
\left(\frac{f}{g} \right)' = \frac{f'g - fg'}{g^2}
\]

\[
\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{[g(x)]^2}
\]

\[
\frac{d}{dx} u = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}
\]

Proof:

\[
\left(\frac{f}{g} \right)' = (fg^{-1})' = f'g^{-1} + f(-1)g^{-2}g'
\]

\[
= \frac{f'g - fg'}{g^2}
\]

Ex 1. Differentiate. Simplify the answer.

\[f(x) = \frac{x^2 - 1}{x^3 + 1} \]

Ex 2. Given that \(f(2) = 1 \), \(f'(2) = -1 \), \(g(2) = 2 \), and \(g'(2) = -2 \) find \(\left(\frac{g}{f + g} \right)'(2) \).

Ex 3. Let \(f(x) = \frac{x^3}{(1+x)^2} \). Find the point(s) on the graph of \(y = f(x) \) where the tangent line is horizontal.
Ex 4. Consider the position function \(s(t) = \frac{\sqrt{t}}{t^2 + 1}, t \geq 0 \).
Find the moment(s) of time when the particle is at rest.

Ex 5. Let \(y = f(x) = \frac{\sqrt{x^2}}{x^2 + 1} \).

a) Differentiate. Simplify the answer.

b) Find the points where the function is not differentiable.

c) Find the numbers \(x \) where the tangent line is horizontal.

d) Use technology to graph the function.

Reading: Nelson Textbook, Pages 94-95

Homework: Nelson Textbook: Page 95 #4f, 5b, 8, 9a, 12, 14, 15, 16