2.1 Derivative Function

A Derivative Function
Given a function \(y = f(x) \), the derivative function of \(f \) is a new function called \(f' \) (f prime), defined at \(x \) by:

\[
f'(x) = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}
\]

B Differentiability
A function \(y = f(x) \) is called **differentiable** at \(x \) if \(f'(x) \) exists. A function \(y = f(x) \) is differentiable over an open interval \((a, b)\) if the function is differentiable at every number in that interval.

Note: The domain of derivative function \(f' \) is a subset of the domain of the original function \(f \): \(D_f \subset D_{f'} \). So a function is defined over \(D_f \) but is differentiable over \(D_{f'} \).

C Interpretations of Derivative Function
1. The **slope of the tangent line** to the graph of \(y = f(x) \) at the point \(P(a, f(a)) \) is given by \(m = f'(a) \).
2. The **instantaneous rate of change** in the variable \(y \) with respect to the variable \(x \), where \(y = f(x) \), at \(x = a \) is given by:
 \[IRC = f'(a) \]

D Notations and Reading
- \(y' = f'(x) \) [Lagrange Notation]
 Read: “y prime” or “f prime at x”
- \(\frac{dy}{dx} = \frac{d}{dx} f(x) \) [Leibnitz Notation]
 Read: “dee y by dee x”
- \(f'(a) = \frac{dy}{dx}{x=a} \)
 Read: “f prime at a, dee y by dee x at x equals a”

E First Principles
Differentiation is the process to find the derivative function for a given function.

First Principles is the process of differentiation by computing the limit:

\[
f'(x) = \lim_{{h \to 0}} \frac{f(x+h) - f(x)}{h}
\]

Ex 1. Use first principles to differentiate each function.

a) \(f(x) = 2x - x^3 \)

b) \(f(x) = \frac{-3}{x^2} \)

c) \(f(x) = \sqrt{ax + b} \)
G Non-Differentiability
A function is **not differentiable** at $x = a$ if $f'(a)$ does not exist.

Notes:
1. If a function f is **not continuous** at $x = a$ then the function f is **not differentiable** at $x = a$.
2. If a function f is **continuous** at $x = a$ then the function f **may be** or **not** differentiable at $x = a$.

H Differentiability Point
If the function $y = f(x)$ is **differentiable** at $x = a$ then the tangent line at $P(a, f(a))$ is **unique** and **not vertical** (the slope of the tangent line is not ∞ or $-\infty$).

I Corner Point
$P(a, f(a))$ is a **corner point** if there are **two** distinct tangent lines at P, one for the left-hand branch and one for the right-hand branch. For example:

\[
 f(x) = \begin{cases}
 f_1(x), & x < a \\
 f_2(x), & x > a
\end{cases} \quad \text{and} \quad f'_1(a) \neq f'_2(a)
\]

J Infinite Slope Point
$P(a, f(a))$ is an **infinite slope point** if the tangent line at P is vertical and the function is increasing or decreasing in the neighborhood at the of the point P.

\[
 f'(a) = \infty \text{ or } f'(a) = -\infty
\]

K Cusp Point
$P(a, f(a))$ is a **cusp point** if the tangent line at P is vertical and the function is increasing on one side of the point P and decreasing on the other side.

\[
 f'(a) = \text{DNE}
\]

Reading: Nelson Textbook, Pages 65-72

Homework: Nelson Textbook: Page 73 #1, 6, 7b, 9, 14, 16, 19