- 1. Analyze the differentiablility of the function: $f(x) = \sqrt[4]{x^5}$
- 2. Analyze the differentiablility of the function: $f(x) = \frac{1}{\sqrt[3]{x}}$
- 3. Analyze the differentiablility of the function: $f(x) = \frac{1}{\sqrt[5]{x^4}}$
- 4. Analyze the differentiablility of the function: $f(x) = \frac{1}{x^4}$
- 5. Analyze the differentiablility of the function: $f(x) = \sqrt[3]{x^2}$
- 6. Analyze the differentiablility of the function: $f(x) = \frac{1}{\sqrt{x}}$
- 7. Analyze the differentiablility of the function: $f(x) = x^3$
- 8. Analyze the differentiablility of the function: $f(x) = \sqrt[5]{x}$
- 9. Analyze the differentiablility of the function: $f(x) = \frac{1}{\sqrt[3]{x^2}}$
- 10. Analyze the differentiablility of the function: $f(x) = \sqrt[5]{x^2}$

1.
$$f'(x) = \frac{5}{4}\sqrt{x}$$
 The function f is differentiable over $\mathbb{R}\backslash\{0\}$.

2. $f'(x) = \frac{-1}{3}\frac{1}{\sqrt[4]{x^4}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$.

3. $f'(x) = \frac{-4}{5}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$.

4. $f'(x) = \frac{-4}{1}\frac{1}{x^5}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$. The point $P(0,0)$ is a cusp point.

5. $f'(x) = \frac{2}{3}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$. The point $P(0,0)$ is an infinite slope of $f'(x) = \frac{1}{5}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$. The point $f'(x) = \frac{1}{5}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$. The point $f'(x) = \frac{1}{5}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$. The point $f'(x) = \frac{2}{5}\frac{1}{\sqrt[4]{x^5}}$ The function f is differentiable over $\mathbb{R}\backslash\{0\}$.

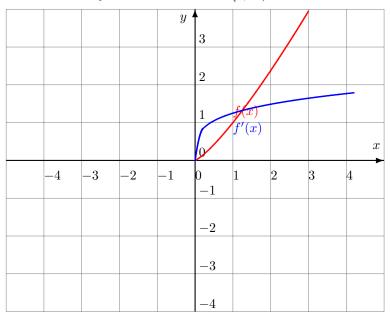
Answers:

Solutions:

1.
$$f(x) = \sqrt[4]{x^5}$$
 The domain of f is $D_f = [0, \infty)$

$$f'(x) = \frac{5}{4} \sqrt[4]{x}$$
 The domain of f' is $D_{f'} = [0, \infty)$

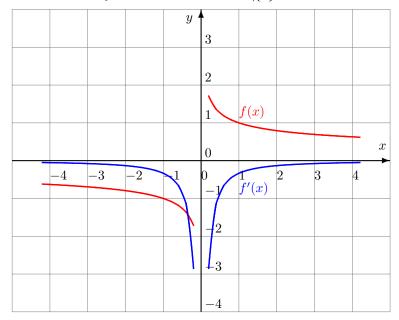
... The function f is differentiable over $[0,\infty).$



2.
$$f(x) = \frac{1}{\sqrt[3]{x}}$$
 The domain of f is $D_f = \mathbb{R} \setminus \{0\}$

$$f'(x) = \frac{-1}{3} \frac{1}{\sqrt[3]{x^4}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

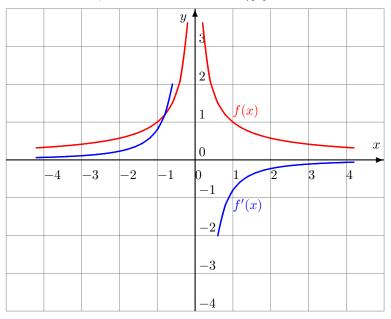
... The function f is differentiable over $\mathbb{R}\setminus\{0\}$.



3.
$$f(x) = \frac{1}{\sqrt[5]{x^4}}$$
 The domain of f is $D_f = \mathbb{R} \setminus \{0\}$

$$f'(x) = \frac{-4}{5} \frac{1}{\sqrt[5]{x^9}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

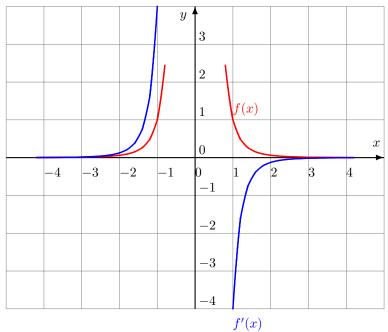
... The function f is differentiable over $\mathbb{R}\setminus\{0\}$.



4.
$$f(x) = \frac{1}{x^4}$$
 The domain of f is $D_f = \mathbb{R} \setminus \{0\}$

$$f'(x) = \frac{-4}{1} \frac{1}{x^5}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

... The function f is differentiable over $\mathbb{R}\setminus\{0\}$.

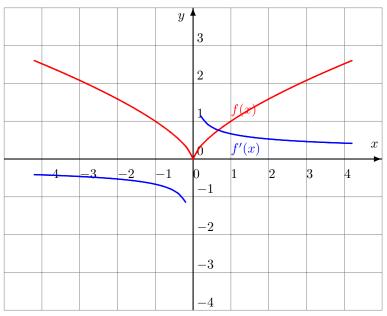


5.
$$f(x) = \sqrt[3]{x^2}$$
 The domain of f is $D_f = \mathbb{R}$

$$f'(x) = \frac{2}{3} \frac{1}{\sqrt[3]{x}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

 \therefore The function f is differentiable over $\mathbb{R}\setminus\{0\}$.

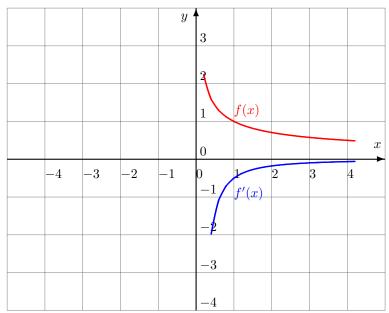
 $\lim_{x \to 0^{-}} f'(x) = -\infty \qquad \lim_{x \to 0^{+}} f'(x) = +\infty \qquad \therefore \text{ The point } P(0,0) \text{ is a cusp point.}$



6.
$$f(x) = \frac{1}{\sqrt{x}}$$
 The domain of f is $D_f = (0, \infty)$

$$f'(x) = \frac{-1}{2} \frac{1}{\sqrt{x^3}}$$
 The domain of f' is $D_{f'} = (0, \infty)$

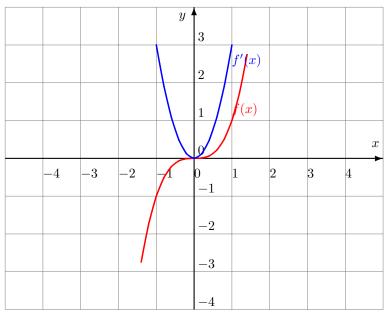
... The function f is differentiable over $(0, \infty)$.



7.
$$f(x) = x^3$$
 The domain of f is $D_f = \mathbb{R}$

$$f'(x) = \frac{3}{1}x^2$$
 The domain of f' is $D_{f'} = \mathbb{R}$

... The function f is differentiable over \mathbb{R} .

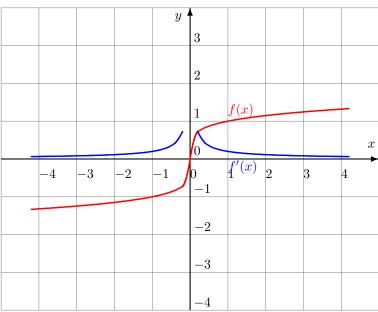


8.
$$f(x) = \sqrt[5]{x}$$
 The domain of f is $D_f = \mathbb{R}$

$$f'(x) = \frac{1}{5} \frac{1}{\sqrt[5]{x^4}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

... The function f is differentiable over $\mathbb{R}\setminus\{0\}$.

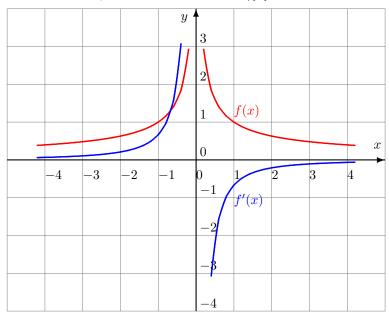
$$\lim_{x\to 0^-}f'(x)=+\infty \qquad \lim_{x\to 0^+}f'(x)=+\infty \qquad \therefore \text{ The point } P(0,0) \text{ is an infinite slope point.}$$



9.
$$f(x) = \frac{1}{\sqrt[3]{x^2}}$$
 The domain of f is $D_f = \mathbb{R} \setminus \{0\}$

$$f'(x) = \frac{-2}{3} \frac{1}{\sqrt[3]{x^5}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

 \therefore The function f is differentiable over $\mathbb{R}\setminus\{0\}$.



10.
$$f(x) = \sqrt[5]{x^2}$$
 The domain of f is $D_f = \mathbb{R}$

$$f'(x) = \frac{2}{5} \frac{1}{\sqrt[5]{x^3}}$$
 The domain of f' is $D_{f'} = \mathbb{R} \setminus \{0\}$

 \therefore The function f is differentiable over $\mathbb{R}\setminus\{0\}$.

$$\lim_{x \to 0^-} f'(x) = -\infty \qquad \lim_{x \to 0^+} f'(x) = +\infty \qquad \therefore \text{ The point } P(0,0) \text{ is a cusp point.}$$

