- 1. Consider the following polynomial function: $f(x) = \frac{(x+2)^2(x-1)^4}{4}$ Sketch the grapf of the function f(x).
- 2. Consider the following polynomial function: $f(x) = \frac{(x+1)^3(x-3)}{-3}$ Sketch the grapf of the function f(x).
- 3. Consider the following polynomial function: $f(x) = \frac{(x+3)^3(x-2)^2}{-108}$ Sketch the grapf of the function f(x) .
- 4. Consider the following polynomial function: $f(x) = \frac{(x+1)^3(x-2)^2}{-4}$ Sketch the grapf of the function f(x) .
- 5. Consider the following polynomial function: $f(x) = \frac{(x+1)(x-2)^3}{-8}$ Sketch the grapf of the function f(x).
- 6. Consider the following polynomial function: $f(x) = \frac{(x+2)^3(x-1)}{-8}$ Sketch the grapf of the function f(x).
- 7. Consider the following polynomial function: $f(x) = \frac{(x+3)^2(x-2)^4}{144}$ Sketch the grapf of the function f(x).
- 8. Consider the following polynomial function: $f(x) = \frac{(x+1)^2(x-2)^2}{4}$ Sketch the grapf of the function f(x).
- 9. Consider the following polynomial function: $f(x) = \frac{(x+3)(x-1)}{-3}$ Sketch the grapf of the function f(x).
- 10. Consider the following polynomial function: $f(x) = \frac{(x+2)^2(x-2)^4}{64}$ Sketch the grapf of the function f(x).

Solutions:

1.
$$f(x) = \frac{(x+2)^2(x-1)^4}{4}$$

The function f(x) is a polynomial function. Therefore the domain is $D_f = \mathbb{R}$.

Symmetry

$$f(-x) = \frac{(-x+2)^2(-x-1)^4}{4}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

The zeros of the function f(x) are: $x_1 = -2$

y-intercept

$$y - int = f(0) = \frac{(0+2)^2(0-1)^4}{4} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+2)^2(x-1)^4}{4} = \frac{(x+2)(x-1)^3}{4} [(2)(x-1) + (4)(x+2)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+2)(x-1)^3}{4}[(2)(x-1)+(4)(x+2)]=0$$

So, the critical numbers are:
$$x_1 = -2$$
 $x_2 = 1$ $x_3 = \frac{(2)(1) + (4)(-2)}{2+4} = -1.000$

Sign Chart for the First Derivative f'(x)

x		-2		-1.000		1	
f(x)	>	0	7	4.000	>	0	7
f'(x)	_	0	+	0	_	0	+

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, -2)$ and over (-1.000, 1) and is increasing over (-2, -1.000) and over $(1, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(-1.000, 4.000)$ and two minimum points at $P_1(-2, 0)$ and at $P_2(1,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+2)(x-1)^3}{4} [(2)(x-1) + (4)(x-2)]$$

$$f''(x) = \frac{(x-1)^2}{4} [30x^2 + 60x + 18]$$

The second derivative f''(x) is zero when f''(x) = 0 or:

$$\frac{(x-1)^2}{4}[30x^2 + 60x + 18] = 0$$

So, the second derivative f''(x) is zero at:

$$x_2 = 1$$
 $x_4 = -1.632$ $x_5 = -0.368$

Sign Chart for the Second Derivative f''(x)

x		-1.632		-0.368	
f(x)	$\overline{}$	1.622		2.330)
f''(x)	+	0	-	0	+

Inflection Points

The infllection point(s) is(are):

$$P_4 = (-1.632, 1.622)$$
 $P_5 = (-0.368, 2.330)$

2.
$$f(x) = \frac{(x+1)^3(x-3)}{-3}$$

$$f(-x) = \frac{(-x+1)^3(-x-3)}{-3}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -1$ and $x_2 = 3$

y-intercept

$$y - int = f(0) = \frac{(0+1)^3(0-3)}{-3} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)^3(x-3)}{-3} = \frac{(x+1)^2}{-3} [(3)(x-3) + (1)(x+1)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+1)^2}{-3}[(3)(x-3) + (1)(x+1)] = 0$$

So, the critical numbers are:
$$x_1 = -1$$
 $x_3 = \frac{(3)(3) + (1)(-1)}{3+1} = 2.000$

Sign Chart for the First Derivative f'(x)

x		-1		2.000	
f(x)	^	0	7	9.000	/
f'(x)	+	0	+	0	_

Increasing and Decreasing Intervals

The function f(x) is increasing over $(-\infty, 2.000)$ and is decreasing over $(2.000, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(2.000, 9.000)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)^2}{-3} [(3)(x-3) + (1)(x-1)]$$

$$f''(x) = \frac{(x-1)^1}{-3} [12x + -12]$$

$$\frac{(x--1)^1}{-3}[12x+-12] = 0$$

So, the second derivative f''(x) is zero at:

$$x_1 = -1$$
 $x_4 = 1.000$

Sign Chart for the Second Derivative f''(x)

x		-1		1.000	
f(x))	0)	5.333)
f''(x)	1	0	+	0	1

Inflection Points

The inflection point(s) is(are):

$$P_1 = (-1, 0)$$
 $P_4 = (1.000, 5.333)$

Graph

(2.00, 9.00)

3.
$$f(x) = \frac{(x+3)^3(x-2)^2}{-108}$$

$$f(-x) = \frac{(-x+3)^3(-x-2)^2}{-108}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -3$ and $x_2 = 2$

y-intercept

$$y - int = f(0) = \frac{(0+3)^3(0-2)^2}{-108} = -1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+3)^3(x-2)^2}{-108} = \frac{(x+3)^2(x-2)}{-108} [(3)(x-2) + (2)(x+3)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+3)^2(x-2)}{-108}[(3)(x-2)+(2)(x+3)] = 0$$

So, the critical numbers are:
$$x_1 = -3$$
 $x_2 = 2$ $x_3 = \frac{(3)(2) + (2)(-3)}{3+2} = 0.000$

Sign Chart for the First Derivative f'(x)

x		-3		0.000		2	
f(x)	>	0	>	-1.000	7	0	>
f'(x)	_	0	_	0	+	0	_

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, 0.000)$ and over $(2, \infty)$ and is increasing over (0.000, 2).

Maximum and Minimum Points

The function f(x) has a minimum point at $P_3(0.000, -1.000)$ and a maximum point at $P_2(2,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+3)^2(x-2)}{-108} [(3)(x-2) + (2)(x-3)]$$

$$f''(x) = \frac{(x+3)}{-108} [20x^2 + 0x + -30]$$

$$\frac{(x+3)}{-108}[20x^2 + 0x + -30] = 0$$

So, the second derivative f''(x) is zero at:

$$x_1 = -3 \qquad x_4 = -1.225 \qquad x_5 = 1.225$$

Sign Chart for the Second Derivative f''(x)

x		-3		-1.225		1.225	
f(x))	0)	-0.539)	-0.420)
f''(x)	+	0	_	0	+	0	_

Inflection Points

The inflection point(s) is(are):

$$P_1 = (-3,0)$$
 $P_4 = (-1.225, -0.539)$ $P_5 = (1.225, -0.420)$

4.
$$f(x) = \frac{(x+1)^3(x-2)^2}{-4}$$

$$f(-x) = \frac{(-x+1)^3(-x-2)^2}{-4}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -1$ and $x_2 = 2$

y-intercept

$$y - int = f(0) = \frac{(0+1)^3(0-2)^2}{-4} = -1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)^3 (x-2)^2}{-4} = \frac{(x+1)^2 (x-2)}{-4} [(3)(x-2) + (2)(x+1)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+1)^2(x-2)}{-4}[(3)(x-2)+(2)(x+1)] = 0$$

So, the critical numbers are:
$$x_1 = -1$$
 $x_2 = 2$ $x_3 = \frac{(3)(2) + (2)(-1)}{3 + 2} = 0.800$

Sign Chart for the First Derivative f'(x)

x		-1		0.800		2	
f(x)	>	0	>	-2.100	7	0	7
f'(x)	ı	0	_	0	+	0	

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, 0.800)$ and over $(2, \infty)$ and is increasing over (0.800, 2).

Maximum and Minimum Points

The function f(x) has a minimum point at $P_3(0.800, -2.100)$ and a maximum point at $P_2(2,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)^2(x-2)}{-4} [(3)(x-2) + (2)(x-1)]$$

$$f''(x) = \frac{(x+1)}{-4} [20x^2 + -32x + 2]$$

$$\frac{(x+1)}{-4}[20x^2 + -32x + 2] = 0$$

So, the second derivative f''(x) is zero at:

$$x_1 = -1$$
 $x_4 = 0.065$ $x_5 = 1.535$

Sign Chart for the Second Derivative f''(x)

x		-1		0.065		1.535	
f(x))	0	(-1.131)	-0.881)
f''(x)	+	0	_	0	+	0	_

Inflection Points

The inflection point(s) is(are):

$$P_1 = (-1,0)$$
 $P_4 = (0.065, -1.131)$ $P_5 = (1.535, -0.881)$

5.
$$f(x) = \frac{(x+1)(x-2)^3}{-8}$$

$$f(-x) = \frac{(-x+1)(-x-2)^3}{-8}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -1$ and $x_2 = 2$

y-intercept

$$y - int = f(0) = \frac{(0+1)(0-2)^3}{-8} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)(x-2)^3}{-8} = \frac{(x-2)^2}{-8} [(1)(x-2) + (3)(x+1)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x-2)^2}{-8}[(1)(x-2) + (3)(x+1)] = 0$$

So, the critical numbers are:
$$x_2 = 2$$
 $x_3 = \frac{(1)(2) + (3)(-1)}{1+3} = -0.250$

Sign Chart for the First Derivative f'(x)

x		-0.250		2	
f(x)	7	1.068	>	0	>
f'(x)	+	0	_	0	_

Increasing and Decreasing Intervals

The function f(x) is increasing over $(-\infty, -0.250)$ and is decreasing over (-0.250∞) .

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(-0.250, 1.068)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x-2)^2}{-8} [(1)(x-2) + (3)(x-1)]$$

$$f''(x) = \frac{(x-2)^1}{-8} [12x + -6]$$

$$\frac{(x-2)^1}{-8}[12x+-6] = 0$$

So, the second derivative f''(x) is zero at:

$$x_2 = 2$$
 $x_4 = 0.500$

Sign Chart for the Second Derivative f''(x)

x		0.500		2	
f(x))	0.633)	0)
f''(x)	_	0	+	0	_

Inflection Points

The inflection point(s) is(are):

$$P_2 = (2,0)$$
 $P_4 = (0.500, 0.633)$

6.
$$f(x) = \frac{(x+2)^3(x-1)}{-8}$$

$$f(-x) = \frac{(-x+2)^3(-x-1)}{-8}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -2$ and $x_2 = 1$

y-intercept

$$y - int = f(0) = \frac{(0+2)^3(0-1)}{-8} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+2)^3(x-1)}{-8} = \frac{(x+2)^2}{-8} [(3)(x-1) + (1)(x+2)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+2)^2}{-8}[(3)(x-1) + (1)(x+2)] = 0$$

So, the critical numbers are:
$$x_1 = -2$$
 $x_3 = \frac{(3)(1) + (1)(-2)}{3+1} = 0.250$

Sign Chart for the First Derivative f'(x)

x		-2		0.250	
f(x)	7	0	7	1.068	>
f'(x)	+	0	+	0	_

Increasing and Decreasing Intervals

The function f(x) is increasing over $(-\infty, 0.250)$ and is decreasing over $(0.250, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(0.250, 1.068)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+2)^2}{-8} [(3)(x-1) + (1)(x-2)]$$

$$f''(x) = \frac{(x - -2)^1}{-8} [12x + 6]$$

$$\frac{(x--2)^1}{-8}[12x+6] = 0$$

So, the second derivative f''(x) is zero at:

$$x_1 = -2 x_4 = -0.500$$

Sign Chart for the Second Derivative f''(x)

x		-2		-0.500	
f(x))	0)	0.633)
f''(x)	_	0	+	0	

Inflection Points

The inflection point(s) is(are):

$$P_1 = (-2, 0)$$
 $P_4 = (-0.500, 0.633)$

7.
$$f(x) = \frac{(x+3)^2(x-2)^4}{144}$$

Symmetry

$$f(-x) = \frac{(-x+3)^2(-x-2)^4}{144}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -3$

y-intercept

$$y - int = f(0) = \frac{(0+3)^2(0-2)^4}{144} = 1.000$$

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+3)^2(x-2)^4}{144} = \frac{(x+3)(x-2)^3}{144} [(2)(x-2) + (4)(x+3)]$$
Critical numbers are the solutions of the equation $f'(x) = 0$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+3)(x-2)^3}{144}[(2)(x-2)+(4)(x+3)]=0$$

So, the critical numbers are:
$$x_1 = -3$$
 $x_2 = 2$ $x_3 = \frac{(2)(2) + (4)(-3)}{2+4} = -1.333$

Sign Chart for the First Derivative f'(x)

x		-3		-1.333		2	
f(x)	>	0	7	2.381	>	0	7
f'(x)	_	0	+	0	_	0	+

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, -3)$ and over (-1.333, 2) and is increasing over (-3, -1.333) and over $(2, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(-1.333, 2.381)$ and two minimum points at $P_1(-3, 0)$ and at $P_2(2,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+3)(x-2)^3}{144} [(2)(x-2) + (4)(x-3)]$$
$$f''(x) = \frac{(x-2)^2}{144} [30x^2 + 80x + 20]$$

$$\frac{(x-2)^2}{144}[30x^2 + 80x + 20] = 0$$

So, the second derivative f''(x) is zero at:

$$x_2 = 2$$
 $x_4 = -2.387$ $x_5 = -0.279$

Sign Chart for the Second Derivative f''(x)

x		-2.387		-0.279	
f(x)	$\overline{}$	0.966	(1.387)
f''(x)	+	0		0	+

Inflection Points

The infllection point(s) is(are):

$$P_4 = (-2.387, 0.966)$$
 $P_5 = (-0.279, 1.387)$

${\bf Graph}$

8.
$$f(x) = \frac{(x+1)^2(x-2)^2}{4}$$

Symmetry

$$f(-x) = \frac{(-x+1)^2(-x-2)^2}{4}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -1$

y-intercept

$$y - int = f(0) = \frac{(0+1)^2(0-2)^2}{4} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+1)^2(x-2)^2}{4} = \frac{(x+1)(x-2)}{4} [(2)(x-2) + (2)(x+1)]$$
Critical numbers are the solutions of the equation $f'(x) = 0$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+1)(x-2)}{4}[(2)(x-2)+(2)(x+1)]=0$$

So, the critical numbers are:
$$x_1 = -1$$
 $x_2 = 2$ $x_3 = \frac{(2)(2) + (2)(-1)}{2 + 2} = 0.500$

Sign Chart for the First Derivative f'(x)

x		-1		0.500		2	
f(x)	>	0	7	1.266	>	0	7
f'(x)	_	0	+	0	_	0	+

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, -1)$ and over (0.500, 2) and is increasing over (-1, 0.500) and over $(2, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(0.500, 1.266)$ and two minimum points at $P_1(-1,0)$ and at $P_2(2,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+1)(x-2)}{4} [(2)(x-2) + (2)(x-1)]$$

$$f''(x) = \frac{1}{4}[12x^2 + -12x + -6]$$

$$\frac{1}{4}[12x^2 + -12x + -6] = 0$$

So, the second derivative f''(x) is zero at:

$$x_4 = -0.366$$
 $x_5 = 1.366$

Sign Chart for the Second Derivative f''(x)

x		-0.366		1.366	
f(x))	0.563		0.563)
f''(x)	+	0	_	0	+

Inflection Points

The inflection point(s) is(are):

$$P_4 = (-0.366, 0.563)$$
 $P_5 = (1.366, 0.563)$

9.
$$f(x) = \frac{(x+3)(x-1)}{-3}$$

Symmetry

$$f(-x) = \frac{(-x+3)(-x-1)}{-3}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -3$ and $x_2 = 1$

y-intercept

$$y - int = f(0) = \frac{(0+3)(0-1)}{-3} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+3)(x-1)}{-3} = \frac{1}{-3} [(1)(x-1) + (1)(x+3)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{1}{-3}[(1)(x-1) + (1)(x+3)] = 0$$

So, the critical numbers are: $x_3 = \frac{(1)(1) + (1)(-3)}{1+1} = -1.000$

Sign Chart for the First Derivative f'(x)

x		-1.000	
f(x)	7	1.333	>
f'(x)	+	0	_

Increasing and Decreasing Intervals

The function f(x) is increasing over $(-\infty, -1.000)$ and is decreasing over $(-1.000, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(-1.000, 1.333)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{-3} [(1)(x-1) + (1)(x-3)]$$

$$f''(x) = 2$$

The second derivative f''(x) is zero when f''(x) = 0or:

$$2 = 0$$

The second derivative f''(x) cannot be zero.

Sign Chart for the Second Derivative f''(x)

x	
f(x)	$\overline{}$
f''(x)	_

Inflection Points

There is no inflection point.

10.
$$f(x) = \frac{(x+2)^2(x-2)^4}{64}$$

Symmetry

$$f(-x) = \frac{(-x+2)^2(-x-2)^4}{64}$$

$$f(-x) \neq -f(x)$$
 $f(-x) \neq f(x)$ Therefore the function $f(x)$ is neither even nor odd function.

Zeros

The zeros of the function f(x) are: $x_1 = -2$

y-intercept

$$y - int = f(0) = \frac{(0+2)^2(0-2)^4}{64} = 1.000$$

Asymptotes

The function f(x) is a polynomial function of degree 3. Therefore the function does not have any kind of asymptotes.

Critical Numbers
$$f'(x) = \frac{d}{dx} \frac{(x+2)^2(x-2)^4}{64} = \frac{(x+2)(x-2)^3}{64} [(2)(x-2) + (4)(x+2)]$$

Critical numbers are the solutions of the equation f'(x) = 0

$$\frac{(x+2)(x-2)^3}{64}[(2)(x-2)+(4)(x+2)]=0$$

So, the critical numbers are:
$$x_1 = -2$$
 $x_2 = 2$ $x_3 = \frac{(2)(2) + (4)(-2)}{2+4} = -0.667$

Sign Chart for the First Derivative f'(x)

x		-2		-0.667		2	
f(x)	>	0	7	1.405	>	0	7
f'(x)	_	0	+	0	_	0	+

Increasing and Decreasing Intervals

The function f(x) is decreasing over $(-\infty, -2)$ and over (-0.667, 2) and is increasing over (-2, -0.667) and over $(2, \infty)$.

Maximum and Minimum Points

The function f(x) has a maximum point at $P_3(-0.667, 1.405)$ and two minimum points at $P_1(-2, 0)$ and at $P_2(2,0)$.

Concavity Intervals

The second derivative of the function f(x) is given by:

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \frac{(x+2)(x-2)^3}{64} [(2)(x-2) + (4)(x-2)]$$
$$f''(x) = \frac{(x-2)^2}{64} [30x^2 + 40x + -8]$$

$$\frac{(x-2)^2}{64}[30x^2 + 40x + -8] = 0$$

So, the second derivative f''(x) is zero at:

$$x_2 = 2 \qquad x_4 = -1.510 \qquad x_5 = 0.177$$

Sign Chart for the Second Derivative f''(x)

x		-1.510		0.177	
f(x))	0.570)	0.818	(
f''(x)	+	0	_	0	+

Inflection Points

The infllection point(s) is(are):

$$P_4 = (-1.510, 0.570)$$
 $P_5 = (0.177, 0.818)$

${\bf Graph}$

