A Normal Equation of a Plane

A plane may be determined by a **point** \(P_0(x_0, y_0, z_0) \) and a **vector** perpendicular to the plane \(\vec{n} \) called the **normal vector**.

If \(P(x, y, z) \) is a generic point on the plane, then:
\[
\overrightarrow{P_0P} \perp \vec{n} \quad \text{and:} \\
\overrightarrow{P_0P} \cdot \vec{n} = 0
\]

This is the **normal equation** of a plane.

B Cartesian Equation of a Plane

Let write the normal vector of a plane in the form:
\[
\vec{n} = (A, B, C)
\]

Then, the normal equation (1) may be written as:
\[
(x-x_0, y-y_0, z-z_0) \cdot (A, B, C) = 0 \\
Ax + By + Cz = Ax_0 + By_0 + Cz_0
\]

or:
\[
Ax + By + Cz + D = 0 \quad (2)
\]
equation which is called the **Cartesian equation** of a plane.

Note. A normal vector to the plane is:
\[
\vec{n} = \vec{u} \times \vec{v}
\]
where \(\vec{u} \) and \(\vec{v} \) are the direction vectors of the plane.

Ex 1. Consider the plane \(\pi \) defined the Cartesian equation \(2x - 3y + 6z + 12 = 0 \).

a) Find a normal vector to this plane.
\[
\vec{n} = (2, -3, 6)
\]

b) Find two points on this plane.
If \(x = 0 \) and \(y = 0 \) then \(z = -2 \). So \((0, 0, -2) \in \pi \).
If \(x = 0 \) and \(z = 0 \) then \(y = 4 \). So \((0, 4, 0) \in \pi \).

c) Find if the point \(P(1, 2, 3) \) is a point on this plane.
\[
2(1) - 3(2) + 6(3) + 12 = 26 \neq 0 \Rightarrow P \notin \pi
\]

Ex 2. Find the Cartesian equation of a plane \(\pi \) that passes through the points \(A(1, -1, 0) \), \(B(0, 0, 1) \), and \(C(0, -2, 1) \).

\[
\vec{u} = \overrightarrow{AB} = (-1, 1, 1); \quad \vec{v} = \overrightarrow{AC} = (-1, -1, 1) \]
\[
\vec{n} = \vec{u} \times \vec{v} = -1 \quad 1 \quad 1 \quad -1 -1 1 = (2, 0, 2) = (A, B, C)
\]
\[
2x + 2z + D = 0 \\
A(1, -1, 0) \in \pi \Rightarrow 2(1) + 2(0) + D = 0 \Rightarrow D = -2
\]
\[
\therefore 2x + 2z - 2 = 0 \text{ or } x + z = 1 = 0
\]

Ex 3. Find parametric and vector equations for the plane:
\[
\pi: x - 2y + 3z - 6 = 0
\]

Method #1
\[
\begin{align*}
\begin{cases}
x = 6 + 2s - 3t \\
y = s \\
z = t
\end{cases} \\
\vec{r} = (6, 0, 0) + s(2, 1, 0) + t(-3, 0, 1), \quad s, t \in \mathbb{R}
\end{align*}
\]

Method #2
\[
\begin{align*}
A(0, 0, 2) \in \pi; \quad B(0, -3, 0) \in \pi; \quad C(6, 0, 0) \in \pi \\
\vec{u} = \overrightarrow{AB} = (0, -3, -2); \quad \vec{v} = \overrightarrow{AC} = (6, 0, -2) \\
\therefore \vec{r} = (0, 0, 2) + s(0, -3, -2) + t(6, 0, -2); \quad s, t \in \mathbb{R} \\
x = 6t \\
y = -3s \\
z = 2 - 2s - 2t
\end{align*}
\]

Ex 4. Find the intersections with the coordinate axes for the plane \(\pi: 3x + 2y + z - 6 = 0 \). Represent the plane graphically.

Let \(A = \pi \cap x\text{-axis} \). \(y_A = z_A = 0 \Rightarrow x_A = 2 \).
\[
\therefore x - \text{int} = A(2, 0, 0).
\]

Let \(B = \pi \cap y\text{-axis} \). \(x_B = z_B = 0 \Rightarrow y_B = 3 \).
\[
\therefore y - \text{int} = B(0, 3, 0).
\]

Let \(C = \pi \cap z\text{-axis} \). \(x_C = y_C = 0 \Rightarrow z_C = 6 \).
\[
\therefore z - \text{int} = C(0, 0, 6).
\]
Ex 5. Find the Cartesian equation of a plane with \(x - \text{int} = -1 \), \(y - \text{int} = 2 \), and \(z - \text{int} = -3 \).

\[
Ax + By + Cz + D = 0
\]

\[
x - \text{int} = -\frac{D}{A} = -1 \Rightarrow A = D
\]

\[
y - \text{int} = -\frac{D}{B} = 2 \Rightarrow B = -\frac{D}{2}
\]

\[
z - \text{int} = -\frac{D}{C} = -3 \Rightarrow C = \frac{D}{3}
\]

\[
Dx - \frac{D}{2}y + \frac{D}{3}z + D = 0
\]

\[
\therefore x - \frac{y}{2} + \frac{z}{3} + 1 = 0 \text{ or } 6x - 3y + 2z + 6 = 0
\]

F Angle between two Planes

The angle between two plane s is defined as the angle between their normal vectors:

\[
\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|}
\]

Note. Using this formula, you may get an acute or an obtuse angle depending on the normal vectors which are used.

Ex 6. Find the angle between each pair of planes.

a) \(\pi_1 : x + 2y + 3z + 1 = 0 \), \(\pi_2 : 3x + 2y + z + 2 = 0 \)

\(\vec{n}_1 = (1,2,3); \quad \vec{n}_2 = (3,2,1) \)

\[
\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} = \frac{(1)(3) + (2)(2) + (3)(1)}{\sqrt{1^2 + 2^2 + 3^2 \sqrt{3^2 + 2^2 + 1^2}}} = \frac{10}{14}\]

\[
\therefore \theta = \cos^{-1}\left(\frac{10}{14}\right) \approx 44.42^\circ
\]

b) \(\pi_1 : x + y + z + 1 = 0 \), \(\pi_2 : x - y - 1 = 0 \)

\(\vec{n}_1 = (1,1,1); \quad \vec{n}_2 = (1,-1,0) \)

\[
\cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} = \frac{(1)(1) + (1)(-1) + (1)(0)}{\sqrt{1^2 + 1^2 + 1^2 \sqrt{1^2 + (-1)^2 + 0^2}}} = \frac{0}{\sqrt{3}} = 0
\]

\[
\therefore \theta = 90^\circ
\]

Reading: Nelson Textbook, Pages 461-468

Homework: Nelson Textbook: Page 468 #1, 5, 7, 8, 9a, 11, 13, 17