4.2 Critical Points. Local Maxima and Minima

A Local Maximum
A function \(f \) has a **local (relative) maximum** at \(x = c \) if \(f(x) \leq f(c) \) when \(x \) is sufficiently close to \(c \) (from both sides).

\(f(c) \) is called the **local (relative) maximum value**.

\((c, f(c)) \) is called the **local (relative) maximum point**.

B Local Minimum
A function \(f \) has a **local (relative) minimum** at \(x = c \) if \(f(x) \geq f(c) \) when \(x \) is sufficiently close to \(c \) (from both sides).

\(f(c) \) is called the **local (relative) minimum value**.

\((c, f(c)) \) is called the **local (relative) minimum point**.

C Note
The following points are neither local minimum or maximum points.

D Critical Numbers and Critical Points
The number \(c \in D \) is a **critical number** if either

\(f'(c) = 0 \) or \(f'(c) \text{ DNE} \)

The point \(P(c, f(c)) \) is called a **critical point**.

Ex 1. A function is defined by the following graph. Find the local minimum or maximum points.

Local minimum points are \(A(-5, 2) \), \(B(-1, 1) \), and \(C(5, 2) \).

Local maximum points are \(D(-6, 4) \) and \(E(2, 5) \).

Ex 2. Find the critical points for:

a) \(f(x) = 2x^3 + 3x^2 \)

\[f'(x) = 6x^2 + 6x = 6x(x + 1) \]

\[f'(x) = 0 \Rightarrow x = 0 \text{ or } x = -1 \]

\[f(0) = 0 \quad f(-1) = 2(-1)^3 + 3(-1)^2 = -2 + 3 = 1 \]

The critical points are \(A(0, 0) \) and \(B(-1, 1) \).

b) \(f(x) = \sqrt[3]{x^2 - 1} \)

\[f'(x) = \left[x^2 - 1\right]^{1/3} = \frac{1}{3}(x^2 - 1)^{-2/3}(2x) = \frac{2x}{3\sqrt[3]{(x^2 - 1)^2}} \]

\[f'(x) = 0 \Rightarrow x = 0, y = -1 \]

\[f'(x) \text{ DNE} \Rightarrow x^2 - 1 = 0 \Rightarrow x = \pm 1, y = 0 \]

The critical points are \(A(0, -1) \), \(B(-1, 0) \), and \(C(1, 0) \).
E Fermat's Theorem
If \(f \) has a local extremum (minimum or maximum) at \(x = c \) then \(c \) is a critical number for \(f \). So, at a local extremum:
\[
f'(c) = 0 \text{ or } f'(c) \text{ DNE}
\]

Note.
If
\[
f'(c) = 0 \text{ or } f'(c) \text{ DNE}
\]
then the function \(f \) may have or not a local extremum (minimum or maximum) at \(x = c \).

F First Derivative Test
Let \(c \) be a critical number of a continuous function \(f \).
If \(f'(x) \) changes sign from positive to negative at \(c \) then \(f \) has a local maximum at \(c \).
If \(f'(x) \) changes sign from negative to positive at \(c \) then \(f \) has a local minimum at \(c \).
If \(f'(x) \) does not change sign at \(c \) then \(f \) has no local extremum (minimum or maximum) at \(c \).

Ex 3. Find the local extrema points for the functions in the previous example.

a) \(f(x) = 2x^3 + 3x^2 \)

\[
f'(x) = 6x^2 + 6x = 6x(x+1)
\]

Sign Chart:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(\nearrow)</td>
<td>(\downarrow)</td>
<td>(\uparrow)</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>(+)</td>
<td>(\text{DNE})</td>
<td>(-)</td>
</tr>
</tbody>
</table>

The point \(A(0,0) \) is a local minimum point and the point \(B(-1,1) \) is a local maximum point.

b) \(f(x) = \sqrt{x^2 - 1} \)

\[
f'(x) = \frac{2x}{3(x^2 - 1)^{3/2}}
\]

Sign Chart:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(\nearrow)</td>
<td>(\downarrow)</td>
<td>(\uparrow)</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>(-)</td>
<td>(\text{DNE})</td>
<td>(\text{DNE})</td>
</tr>
</tbody>
</table>

The point \(A(0,-1) \) is a local minimum point.

Ex 4. Find a function of the form \(f(x) = ax^4 + bx^2 + cx + d \) with a local maximum at \((0,-6)\) and a local minimum at \((1,-8)\).

\[
f(0) = -6 \Rightarrow d = -6 \quad (1)
\]
\[
f(1) = -8 \Rightarrow a + b + c + d = -8 \quad (2)
\]
\[
f'(x) = 4ax^3 + 2bx + c
\]
\[
f'(0) = 0 \Rightarrow c = 0 \quad (3)
\]
\[
f'(1) = 0 \Rightarrow 4a + 2b + c = 0 \quad (4)
\]

\[(1),(2),(3),(4) \Rightarrow \begin{cases} a + b - 6 = -8 \\ 4a + 2b = 0 \end{cases} \Rightarrow \begin{cases} a + b = -2 \\ 2a + b = 0 \end{cases} \Rightarrow a = 2 \quad \text{and} \quad b = -4
\]

\[
\therefore f(x) = 2x^4 - 4x^2 - 6
\]