3.1 Higher Order Derivatives. Velocity and Acceleration

A Higher Order Derivatives
Let consider the function \(y = f(x) \).

The first derivative of \(f \) or “\(f \) prime” is:

\[f'(x) = \frac{dy}{dx} \]

The second derivative of \(f \) or “\(f \) double prime” is:

\[f''(x) = \frac{d}{dx}\left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} \]

The third derivative of \(f \) or “\(f \) triple prime” is:

\[f'''(x) = \frac{d}{dx}\left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3} \]

The fourth derivative of \(f \) or “super 4” is:

\[f^{(4)}(x) = \frac{d}{dx}\left(\frac{d^3y}{dx^3} \right) = \frac{d^4y}{dx^4} \]

The \(n \)-th derivative of \(f \) or “super \(n \)” is:

\[f^{(n)}(x) = \frac{d}{dx}\left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^n y}{dx^n} \]

Notes.
1. \(f \) is differentiable at \(x \) if \(f'(x) \) exists.
2. \(f \) is double differentiable at \(x \) if \(f''(x) \) exists.
3. \(f \) is \(n \) differentiable at \(x \) if \(f^{(n)}(x) \) exists.

Ex 1. Find \(f' \), \(f'' \), \(f''' \), \(f^{(4)} \), and \(f^{(5)} \) for \(f(x) = -x^4 + 3x^2 - x + 1 \).

\[f'(x) = -4x^3 + 6x - 1 \]
\[f''(x) = -12x^2 + 6 \]
\[f'''(x) = -24x \]
\[f^{(4)}(x) = -24 \]
\[f^{(5)}(x) = 0 \] if \(n \geq 5 \)

Ex 2. Find \(f' \), \(f'' \), and \(f''' \) for \(f(x) = \frac{x^3}{x^2 + 1} \).

\[f'(x) = \frac{3x^2(x^2 + 1) - x^3(2x)}{(x^2 + 1)^2} = \frac{x^4 + 3x^2}{(x^2 + 1)^2} \]
\[f''(x) = \frac{4x^3(3x) + 6x(x^2 + 1)^2 - (x^4 + 3x^2)(2)(x^2 + 1)(2x)}{(x^2 + 1)^4} \]
\[= \frac{4x^5 + 4x^3 + 6x^3 + 6x - 4x^5 - 12x^3}{(x^2 + 1)^3} = - \frac{2x^3 + 6x}{(x^2 + 1)^3} \]
\[f'''(x) = \frac{(-6x^2 + 6)(x^2 + 1)^3 - (-2x^3 + 6x)(3)(x^2 + 1)(2x)}{(x^2 + 1)^4} \]
\[= \frac{-6x^4 - 6x^2 + 6x^2 + 12x^4 - 36x^2}{(x^2 + 1)^4} \]
\[= \frac{6x^4 - 36x^2 + 6}{(x^2 + 1)^4} \]

Ex 3. Find \(f^{(n)} \) for \(f(x) = \frac{x}{x + 1} \).

\[f(x) = \frac{x}{x + 1} = \frac{x + 1 - 1}{x + 1} = 1 - \frac{1}{x + 1} = 1 - (x + 1)^{-1} \]
\[f'(x) = -(1)(x + 1)^{-2} \]
\[f''(x) = -(-1)(-2)(x + 1)^{-3} \]
\[f'''(x) = -(-1)(-2)(-3)(x + 1)^{-4} \]
\[f^{(n)}(x) = -(-1)(-2)(-3)\ldots(-n)(x + 1)^{-n-1} \]
\[\therefore f^{(n)}(x) = \frac{(-1)^n n!}{(x + 1)^{n+1}} \]

Ex 4. Show that \(y = x^3 + 3x + 1 \) satisfies \(y''' + xy'' - 2y' = 0 \).

\[y' = 3x^2 + 3 \]
\[y'' = 6x \]
\[y''' = 6 \]
\[LS = y''' + xy'' - 2y' = 6 + x(6x) - 2(3x^2 + 3) = 6 + 6x^2 - 6x^2 - 6 = 0 = RS \]
B Velocity and Acceleration

Let \(s(t) \) or \(h(t) \) (height or altitude) be the position function of a particle.

\[s(t) = \text{position at time } t \]

Displacement is the change in position over a time interval \([t_1, t_2] \):

\[\Delta s = s(t_2) - s(t_1) \quad \Delta h = h(t_2) - h(t_1) \]

Average Velocity is defined by:

\[AV = \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1} \quad (m/s) \]

Velocity function is the derivative of the position function:

\[v(t) = s'(t) = h'(t) \]

Speed function is the absolute value of velocity \(|v(t)| \).

Acceleration function is the derivative of velocity:

\[a(t) = v'(t) = s''(t) \quad (m/s^2) \]

Jerk function is the derivative of acceleration:

\[j(t) = a'(t) = v''(t) = s'''(t) \quad (m/s^3) \]

Notes:

\(s(t) = 0 \) (particle is in the origin)
\(h(t) = 0 \) (particle is on the ground)
\(s(t) > 0 \) (particle is on the positive side of the origin)
\(s(t) < 0 \) (particle is on the negative side of the origin)
\(h(t) > 0 \) (particle is above the ground)
\(h(t) < 0 \) (particle is below the ground)

\(v(t) = 0 \) (particle is at rest, changes direction of movement)
\(v(t) > 0 \) (particle moves in the positive direction (right or up))
\(v(t) < 0 \) (particle moves in the negative direction (left or down))

\(a(t) = 0 \) (particle is not accelerated)

If \(|s| \) is increasing then the particle is moving away from the origin (MAFO) and \(s(t)v(t) > 0 \).
If \(|s| \) is decreasing then the particle is moving towards the origin (MTO) and \(s(t)v(t) < 0 \).

If \(|v| \) is increasing then the particle is speeding up (SU) and \(v(t)a(t) > 0 \).
If \(|v| \) is decreasing then the particle is slowing down (SD) and \(v(t)a(t) < 0 \).

Ex 4. Consider the following position function

\[s(t) = \frac{t^3 - 12t}{4} \]

a) Graph on the same grid \(s(t), v(t), a(t) \).

\[s(t) = 0 \Rightarrow t(t^2 - 12) = 0 \Rightarrow t = 0 \text{ or } t = \pm 2\sqrt{3} \]

\[v(t) = \frac{3t^2 - 12}{4} \]

\[v(t) = 0 \Rightarrow 3(t^2 - 4) = 0 \Rightarrow t = \pm 2 \Rightarrow s(\pm 2) = \pm 4 \]

\[a(t) = \frac{6t}{4} = \frac{3}{2} \]

See the figure below:

b) Find the interval(s) when the particle is moving towards the origin.

According to the figure above, the particle is moving towards the origin (MTO) when
\[t \in (-\infty, -2\sqrt{3}) \cup (-2, 0) \cup (2, 2\sqrt{3}) \]

c) Find the interval(s) when the particle is speeding up.

According to the figure above the particle is speeding up (SU) when
\[t \in (-2, 0) \cup (2, \infty) \]

Homework:

\(a) \) \(s(t) = (t^2 - 4)^2 \) \(b) \) \(s(t) = t^2 (t^2 - 1) \)
\(c) \) \(s(t) = t^4 - 16 \) \(d) \) \(s(t) = t^3 (t^2 - 1) \)
\(e) \) \(s(t) = t(t^4 - 1) \) \(f) \) \(s(t) = t^4 - 2t^2 \)

Reading: Nelson Textbook, Pages 119-126

Homework: Nelson Textbook: Page 127 #2def, 5, 3be, 10, 11, 14, 18

3.1 Higher Order Derivatives, Velocity and Acceleration
©2010 Iulia & Teodoru Gugoiu - Page 2 of 2